فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها


در حال بارگذاری
18 سپتامبر 2024
فایل ورد و پاورپوینت
2120
2 بازدید
۶۹,۷۰۰ تومان
خرید

دریافت فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها به همراه پاورپوینت رایگان!

🎁 پیشنهاد ویژه برای شما!

با خرید پروژه فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها، یک پاورپوینت حرفه‌ای با طراحی جذاب و قابل استفاده به‌صورت کاملاً رایگان به شما اهدا می‌شود.

✨ چرا فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها انتخاب مناسبی است؟

  • ۵۵ صفحه فرمت‌بندی‌شده و استاندارد: فایل Word حاوی ۵۵ صفحه کاملاً تنظیم‌شده است و آماده برای چاپ یا ارائه می‌باشد.
  • مطابق با استانداردهای علمی: این فایل مطابق با اصول و استانداردهای دانشگاهی و مؤسسات آموزشی تهیه شده و به‌خصوص برای دانشجویان و دانش‌آموزان مناسب است.
  • محتوای دقیق و منظم: فایل نهایی بدون هیچ‌گونه بهم‌ریختگی ارائه می‌شود و تمامی موارد به‌درستی تنظیم شده‌اند.
  • پاورپوینت رایگان: به‌عنوان یک هدیه ویژه، پاورپوینت آماده با طراحی زیبا و استاندارد به همراه فایل Word دریافت خواهید کرد.
  • آماده برای ارائه: فایل‌ها به‌طور کامل آماده‌اند و نیازی به تغییر یا ویرایش برای ارائه در کلاس‌ها و سمینارها ندارند.
  • مطالب علمی و کاربردی: این فایل شامل اطلاعات علمی به‌روز و مفید است که به شما در درک بهتر موضوعات کمک خواهد کرد.
  • قابلیت ویرایش آسان: فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها به‌طور کامل فرمت‌بندی شده است و به‌سادگی قابل ویرایش است تا با نیازهای شما هماهنگ شود.
  • تضمین کیفیت: ما کیفیت این فایل را تضمین می‌کنیم و در صورت بروز هرگونه مشکل، پشتیبانی کاملی ارائه می‌دهیم.

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها دارای ۵۵ صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد فایل کامل و عالی حل عددی معادلات انتگرال – دیفرانسیل ولترا با پایه های دلخواه از چند جمله ای ها  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

فهرست مطالب

فصل ۰: پیشگفتار                                                             1                
     1-0 خطاها                                                        1   
     2-0 توابع وچند جمله ای ها                                             3
     3-0 معادلات انتگرال-دیفرانسیل فردهلم در فضای باناخ                       8
فصل ۱: مقدمه                                         13
فصل ۲: نماد ماتریس                                     15
     1-2 قسمت های دیفرانسیل وشرایط ممکن                         15
     2-2 قسمت انتگرال                                     16
     3-2 تبدیلIDE  به ماتریس                                 18
فصل ۳: برآورد خطا                                     20
فصل ۴: کاربرد مبنای چپیشف                                 22
فصل ۵: مثال های عددی و نتایج                             26
پیوست تاریخی                                         31
واژه نامه فارسی به انگلیسی                                 36
منابع                                             41

فهرست جداول

جدول شماره ۱ ۲۸
                                   
جدول شماره ۲۲۹                                   

چکیده
هدف از این مقاله بررسی روش تائو با پایه های چند جمله ای دلخواه برای یافتن معادلات  انتگرال –دیفرانسیل ولترا(VIDES)است.قسمت  های دیفرانسیل و انتگرال این معادلات توسط نمادهای علمی تائو جایگزین می شوند.به این منظور که VIDES را به دستگاه معادلات خطی تبدیل کند.برای برتری روش تائو نتایج عددی چند مثال با پایه های چند جمله ای چپیشف ارائه می شود.

واژگان کلیدی: انتگرال-دیفرانسیل،چند جمله ای، ضرایب، ثابت ها، ماتریس، بردار، مبنای چبیشف

فصل ۰
پیشگفتار

۱-۰ انواع خطا
در مسائل عددی معمولا تقریب هائی از یک مجهول را در اختیار داریم لذا بین این تقریب ها و مقادیر واقعی خطاهائی وجود دارد لذا چند خطا را مورد بررسی قرار می دهیم.

۱-۱-۰ تعریف
اگر  تقریبی   باشدوقراردهیم  آن گاه   راخطای مطلق می نامیم.

۲-۱-۰ تعریف
هر عدد ناکمتراز را یک خطای مطلق حدی نامیم و با  نمایش می دهیم بنابر این همواره  و بر خلاف  ،   منحصر بفرد نمی باشد.                                       

۳-۱-۰ قرارداد
هر وقت  می نویسیم:                      

۴-۱-۰ تعریف
       اگر  تقریبی از عدد مخالف صفر  باشد خطای نسبی  را با نشان می دهیم و آن عبارت است از خطا در واحد کمیت . یعنی:                      

 
۵-۱-۰ قضیه
اگر  تقریبی از  و  یک خطای مطلق حدی  باشد داریم:

برهان: بنا به فرض داریم: 
                                                                                                                                                                                           

و بنا بر خواص قدر مطلق داریم:                                                                                  
                                                                                                                                                 
                                                                                                                                   
در نتیجه داریم:                                                                                                                                                                                             

لذا:        
                                                                                                                                                                                                                                                                
۶-۱-۰ قرارداد
اگر  در مقایسه با  کوچک باشد می توان از آن صرف نظر کرد و نوشت:
                                                                                                                                   

۷-۱-۰ نتیجه
اگر  در مقایسه با  کوچک باشد آن گاه:                                                                                 
 

۲-۰ توابع و جند جمله ای ها
در این قسمت با چند نوع تابع و چند جمله ای آشنا می شویم.

۱-۲-۰ تعریف
دو تابع   را نسبت به تابع وزن  بر بازه  متعامد گوئیم هرگاه:
                                      

۲-۲-۰ تذکر 
در حالتی که به ازای هر          دو تابع  را متعامد ساده گوئیم.

۳-۲-۰ تعریف
دنباله توابع     را یک مجموعه متعامد می نامیم اگر این توابع دوبدو متعامد باشند ، یعنی  اگر   هنگامی که  . که در آن  یک مجموعه ساده از چند جمله ای ها می باشد.

۴-۲-۰ تعریف
مجموعه های چندجمله ای هایی که روی بازه   نسبت به تابع وزن     متعامد باشند، به چند جمله ای های ژاکوبی معروف هستند.

۵-۲-۰ تذکر
چند جمله ای های لژاندر دسته خاصی از چند جمله ای های  زاکوبی  به  ازای    هستند.

۶-۲-۰ تذکر
دودسته خاص از چندجمله ایهای ژاکوبی،چندجمله ایهایی از نوع اول و دوم می باشند که بررسی می کنیم
چندجمله ای های چپیشف از نوع اول دارای تابع وزن   و  متناظر  با    می باشند.
چندجمله ای های چپیشف از نوع دوم دارای تابع وزن    و متناظر با  می باشند.

۷-۲-۰ قضیه
فرض می کنیم  یک عدد صحیح نامنفی باشد در این صورت چندجمله ای  های  از درجه  وجود دارند، به قسمی که:        
                           
(۱)                                                                                 

اثبات: بنا بر قضیه موآور،به ازای هرعددصحیح نامنفی   ،خواهیم داشت:

      (2)                                                                           
  
با به کار بردن قضیه دو جمله ای می توانیم بنوبسیم:

(۳)                                        

قسمتهای حقیقی و موهومی دو طرف معادله (۳) را مساوی قرار می دهیم. جمله های حقیقی در مجموع طرف راست این معادله، متناظر با مقادیر زوج  هستند.
وقتی   آن گاه:
 

با مساوی قرار دادن قسمت های حقیقی در معادله(۳)،خواهیم داشت:

 

طرف راست این معادله یک چند جمله ای درجه  از   است.این چند جمله ای را با  نمایش میدهیم.در این صورت:    
                                                                                   
 
منابع

 [1] معادلات دیفرانسیل با مشتقات جزئی – تالیف دکتر سعید فاریابی- ویراستار: محمد جلوداری ممقانی تهران دانشگاه پیام نور، چاپ اول مرداد ۱۳۷۴چاپ پنجم مرداد ۱۳۸۵ صفحات ۳،۲و۶۰-۵۵

آنالیز عددی- تالیف  دکتر اسماعیل  بابلیان –  ویراستار:  دکتر دانایی. انتشارات دانشگاه پیام نور- چاپ [۲]
اول اردیبهشت۱۳۷۶ ، چاپ چهارم شهریور۱۳۸۱ صفحات۲۶-
۲۲

[۳]   S.M.  Hosseini   and   S. shah morad ,  Numerical  solution of a class of integro_ differential equations  by  the Tau  method with an error  estimation, Appl.  Math. Comput. 136(2003)  , 559- 570

[۴]   S.M.Hosseini an S.shah morad ,  Tau numerical  soiution  of  Fred holm  integro- differential equations with arbitary polynomial  bases ;  J. Appl . Math . modeling  27 (2003) ,  145-154

[۵]    S.M.  Hosseini   and   S.shah morad ,  Amatrix  formulation  of  the  tau  method  for  Fredholm  and  Volterra  linear  integro- differential  equations.  Koran  J .comput .  App. Math .   9 (2) (2002)      497-507 

[۶] A. Makroglou ,  convergence   of  a block –by – block method  for  non –linear  volterra  integro  –  differential  equations . Math . comp .35 (1980)  , 783-196

[۷] Alexandra Miahibica,Vasile Aurel caus, and Sorin Muresan , Application of a  trapezoi inequality to neutral Fredholm  integro – differential  equations  in Banach space ;  Journal of  Inequalities in pure and Applied Math  volume 1; Issae 5, Article 173 (2006)

[۸] E.L.Ortiz ,  on the numerical  solution of  non – linear  and functional   differential – equations  with  the Tau method . In  : Numeri cal treatment  of  differential – equations  in applications , springer – verlag , Berlin  (1978) ,127 -139
 

[۹] E.L. Ortiz ,  and  H . samara :  An  operational  approach to the  Tau method  for the numerical   solution of non – linear  differential  equations , computing   27(1981) . 15-25

  راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.